An excerpt from quantum physicist Erwin Schrodinger's "What Is Life?" (1944)


What is the characteristic feature of life? When is a piece of matter said to be alive? When it goes on 'doing something', moving, exchanging material with its environment, and so forth, and that for a much longer period than we would expect of an inanimate piece of matter to 'keep going' under similar circumstances. When a system that is not alive is isolated or placed in a uniform environment, all motion usually comes to a standstill very soon as a result of various kinds of friction; differences of electric or chemical potential are equalized, substances which tend to form a chemical compound do so, temperature becomes uniform by heat conduction. After that the whole system fades away into a dead, inert lump of matter. A permanent state is reached, in which no observable events occur. The physicist calls this the state of thermodynamical equilibrium, or of `maximum entropy'. Practically, a state of this kind is usually reached very rapidly. Theoretically, it is very often not yet an absolute equilibrium, not yet the true maximum of entropy. But then the final approach to equilibrium is very slow. It could take anything between hours, years, centuries,... To give an example -one in which the approach is still fairly rapid: if a glass filled with pure water and a second one filled with sugared water are placed together in a hermetically closed case at constant temperature, it appears at first that nothing happens, and the impression of complete equilibrium is created. But after a day or so it is noticed that the pure water, owing to its higher vapour pressure, slowly evaporates and condenses on the solution. The latter overflows. Only after the pure water has totally evaporated has the sugar reached its aim of being equally distributed among all the liquid water available. These ultimate slow approaches to equilibrium could never be mistaken for life, and we may disregard them here. I have referred to them in order to clear myself of a charge of Inaccuracy. IT FEEDS ON 'NEGATIVE ENTROPY' It is by avoiding the rapid decay into the inert state of 'equilibrium' that an organism appears so enigmatic; so much so, that from the earliest times of human thought some special non-physical or supernatural force (vis viva, entelechy) was claimed to be operative in the organism, and in some quarters is still claimed. How does the living organism avoid decay? The obvious answer is: By eating, drinking, breathing and (in the case of plants) assimilating. The technical term is metabolism. The Greek word () means change or exchange. Exchange of what? Originally the underlying idea is, no doubt, exchange of material. (E.g. the German for metabolism is Stoffwechsel.) That the exchange of material should be the essential thing is absurd. Any atom of nitrogen, oxygen, sulphur, etc., is as good as any other of its kind; what could be gained by exchanging them? For a while in the past our curiosity was silenced by being told that we feed upon energy. In some very advanced country (I don't remember whether it was Germany or the U.S.A. or both) you could find menu cards in restaurants indicating, in addition to the price, the energy content of every dish. Needless to say, taken literally, this is just as absurd. For an adult organism the energy content is as stationary as the material content. Since, surely, any calorie is worth as much as any other calorie, one cannot see how a mere exchange could help. What then is that precious something contained in our food which keeps us from death? That is easily answered. Every process, event, happening -call it what you will; in a word, everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on. Thus a living organism continually increases its entropy -or, as you may say, produces positive entropy -and thus tends to approach the dangerous state of maximum entropy, which is of death. It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy -which is something very positive as we shall immediately see. What an organism feeds upon is negative entropy. Or, to put it less paradoxically, the essential thing in metabolism is that the organism succeeds in freeing itself from all the entropy it cannot help producing while alive. The whole article is here